skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Giovannoni, James"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract It is well known that if a fruit is harvested extremely early its development and function are interrupted, and it may never attain full maturity and optimal quality. Reports revealing insights regarding the alterations of maturation, ripening and postharvest quality in very early picked fruits are rare. We examined the effects of early harvesting on tomatoes by characterizing different accessions at the molecular, physiological, and biochemical levels. We found that even very early–harvested fruits could achieve postharvest maturation and ripening though with some defects in pigment and cuticle formation, and seeds from very early–harvested fruits could still germinate and develop as normal and healthy plants. One critical regulator of tomato cuticle integrity, SlCER1–2, was shown to contribute to cuticle defects in very early–harvested fruits. Very early fruit harvest still allowing ripening and seed development indicate that the genetic and physiological programs of later maturation and ripening are set into motion early in fruit development and are not dependent on complete fruit expansion nor attachment to the plant. 
    more » « less
  2. Abstract Ripening is crucial for the development of fleshy fruits that release their seeds following consumption by frugivores and are important contributors to human health and nutritional security. Many genetic ripening regulators have been identified, especially in the model system tomato, yet more remain to be discovered and integrated into comprehensive regulatory models. Most tomato ripening genes have been studied in pericarp tissue, though recent evidence indicates that locule tissue is a site of early ripening-gene activities. Here we identified and functionally characterized an Ethylene Response Factor gene,SlERF.D6, by investigating tomato transcriptome data throughout plant development, emphasizing genes elevated in the locule during fruit development and ripening.SlERF.D6loss-of-function mutants resulting from CRISPR/Cas9 gene editing delayed ripening initiation and carotenoid accumulation in both pericarp and locule tissues. Transcriptome analysis of lines altered inSlERF.D6expression revealed multiple classes of altered genes including ripening regulators, in addition to carotenoid, cell wall and ethylene pathway genes, suggesting comprehensive ripening control. Distinct regulatory patterns in pericarp versus locule tissues were observed indicating tissue-specific activity of this transcription factor. Analysis of SlERF.D6 interaction with target promoters revealed an AP2/ERF transcription factor(SlDEAR2) as a target of SlERF.D6. Furthermore, we show that a third transcription factor gene,SlTCP12, is a target of SlDEAR2, presenting a tri-component module of ripening control. 
    more » « less
  3. A level of redundancy and interplay among the transcriptional regulators of floral development safeguards a plant's reproductive success and ensures crop production. In the present study, an additional layer of complexity in the regulation of floral meristem (FM) identity and flower development is elucidated linking carotenoid biosynthesis and metabolism to the regulation of determinate flowering. The accumulation and subsequent cleavage of a diverse array of ζ-carotenes in the chloroplast biogenesis 5 (clb5) mutant of Arabidopsis results in the reprogramming of meristematic gene regulatory networks establishing FM identity mirroring that of the FM identity master regulator, APETALA1 (AP1). The immediate transition to floral development in clb5 requires long photoperiods in a GIGANTEA-independent manner, whereas AP1 is essential for the floral organ development of clb5. The elucidation of this link between carotenoid metabolism and floral development translates to tomato exposing a regulation of FM identity redundant to and initiated by AP1 and proposed to be dependent on the E class floral initiation and organ identity regulator, SEPALLATA3 (SEP3). 
    more » « less
  4. null (Ed.)
  5. Abstract Methyl salicylate imparts a potent flavor and aroma described as medicinal and wintergreen that is undesirable in tomato (Solanum lycopersicum) fruit. Plants control the quantities of methyl salicylate through a variety of biosynthetic pathways, including the methylation of salicylic acid to form methyl salicylate and subsequent glycosylation to prevent methyl salicylate emission. Here, we identified a subclade of tomato methyl esterases, SALICYLIC ACID METHYL ESTERASE1-4, responsible for demethylation of methyl salicylate to form salicylic acid in fruits. This family was identified by proximity to a highly significant methyl salicylate genome-wide association study locus on chromosome 2. Genetic mapping studies in a biparental population confirmed a major methyl salicylate locus on chromosome 2. Fruits from SlMES1 knockout lines emitted significantly (P < 0,05, t test) higher amounts of methyl salicylate than wild-type fruits. Double and triple mutants of SlMES2, SlMES3, and SlMES4 emitted even more methyl salicylate than SlMES1 single knockouts—but not at statistically distinguishable levels—compared to the single mutant. Heterologously expressed SlMES1 and SlMES3 acted on methyl salicylate in vitro, with SlMES1 having a higher affinity for methyl salicylate than SlMES3. The SlMES locus has undergone major rearrangement, as demonstrated by genome structure analysis in the parents of the biparental population. Analysis of accessions that produce high or low levels of methyl salicylate showed that SlMES1 and SlMES3 genes expressed the highest in the low methyl salicylate lines. None of the MES genes were appreciably expressed in the high methyl salicylate-producing lines. We concluded that the SlMES gene family encodes tomato methyl esterases that convert methyl salicylate to salicylic acid in ripe tomato fruit. Their ability to decrease methyl salicylate levels by conversion to salicylic acid is an attractive breeding target to lower the level of a negative contributor to flavor. 
    more » « less
  6. null (Ed.)
  7. Abstract Water availability influences all aspects of plant growth and development; however, most studies of plant responses to drought have focused on vegetative organs, notably roots and leaves. Far less is known about the molecular bases of drought acclimation responses in fruits, which are complex organs with distinct tissue types. To obtain a more comprehensive picture of the molecular mechanisms governing fruit development under drought, we profiled the transcriptomes of a spectrum of fruit tissues from tomato (Solanum lycopersicum), spanning early growth through ripening and collected from plants grown under varying intensities of water stress. In addition, we compared transcriptional changes in fruit with those in leaves to highlight different and conserved transcriptome signatures in vegetative and reproductive organs. We observed extensive and diverse genetic reprogramming in different fruit tissues and leaves, each associated with a unique response to drought acclimation. These included major transcriptional shifts in the placenta of growing fruit and in the seeds of ripe fruit related to cell growth and epigenetic regulation, respectively. Changes in metabolic and hormonal pathways, such as those related to starch, carotenoids, jasmonic acid, and ethylene metabolism, were associated with distinct fruit tissues and developmental stages. Gene coexpression network analysis provided further insights into the tissue-specific regulation of distinct responses to water stress. Our data highlight the spatiotemporal specificity of drought responses in tomato fruit and indicate known and unrevealed molecular regulatory mechanisms involved in drought acclimation, during both vegetative and reproductive stages of development. 
    more » « less
  8. Abstract Use of CRISPR-Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-CRISPR-associated 9)-mediated genome editing has proliferated for use in numerous plant species to modify gene function and expression, usually in the context of either transient or stably inherited genetic alternations. While extremely useful in many applications, modification of some loci yields outcomes detrimental to further experimental evaluation or viability of the target organism. Expression of Cas9 under a promoter conferring gene knockouts in a tissue-specific subset of genomes has been demonstrated in insect and animal models, and recently inArabidopsis. We developed an in planta GFP (green fluorescent protein) assay system to demonstrate fruit-specific gene editing in tomato using aphosphoenolpyruvate carboxylase 2gene promoter. We then targeted a SET-domain containing polycomb protein, SlEZ2, previously shown to yield pleiotropic phenotypes when targeted via35S-driven RNA interference and we were able to characterize fruit phenotypes absent additional developmental perturbations. Tissue-specific gene editing will have applications in assessing function of essential genes otherwise difficult to study via germline modifications and will provide routes to edited genomes in tissues that could not otherwise be recovered when their germline modification perturbs their normal development. 
    more » « less
  9. Abstract Tomato (Solanum lycopersicum) is a highly valuable fruit crop, and yield is one of the most important agronomic traits. However, the genetic architecture underlying tomato yield-related traits has not been fully addressed. Based on ∼4.4 million single nucleotide polymorphisms obtained from 605 diverse accessions, we performed a comprehensive genome-wide association study for 27 agronomic traits in tomato. A total of 239 significant associations corresponding to 129 loci, harboring many previously reported and additional genes related to vegetative and reproductive development, were identified, and these loci explained an average of ∼8.8% of the phenotypic variance. A total of 51 loci associated with 25 traits have been under selection during tomato domestication and improvement. Furthermore, a candidate gene, Sl-ACTIVATED MALATE TRANSPORTER15, that encodes an aluminum-activated malate transporter was functionally characterized and shown to act as a pivotal regulator of leaf stomata formation, thereby affecting photosynthesis and drought resistance. This study provides valuable information for tomato genetic research and breeding. 
    more » « less
  10. Fruit softening is a key component of the irreversible ripening program, contributing to the palatability necessary for frugivore-mediated seed dispersal. The underlying textural changes are complex and result from cell wall remodeling and changes in both cell adhesion and turgor. While a number of transcription factors (TFs) that regulate ripening have been identified, these affect most canonical ripening-related physiological processes. Here, we show that a tomato fruit ripening–specific LATERAL ORGAN BOUNDRIES ( LOB ) TF, SlLOB1 , up-regulates a suite of cell wall–associated genes during late maturation and ripening of locule and pericarp tissues. SlLOB1 repression in transgenic fruit impedes softening, while overexpression throughout the plant under the direction of the 35s promoter confers precocious induction of cell wall gene expression and premature softening. Transcript and protein levels of the wall-loosening protein EXPANSIN1 ( EXP1 ) are strongly suppressed in Sl LOB1 RNA interference lines, while EXP1 is induced in Sl LOB1 -overexpressing transgenic leaves and fruit. In contrast to the role of ethylene and previously characterized ripening TFs, which are comprehensive facilitators of ripening phenomena including softening, Sl LOB1 participates in a regulatory subcircuit predominant to cell wall dynamics and softening. 
    more » « less